
www.manaraa.com

Lore: A Database Management System for Semistructured Data�Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan Quass, Jennifer WidomStanford Universityfmchughj,abitebou,royg,quass,widomg@db.stanford.eduhttp://www-db.stanford.edu/loreAbstractLore (for Lightweight Object Repository) is a DBMS de-signed speci�cally for managing semistructured information.Implementing Lore has required rethinking all aspects of aDBMS, including storage management, indexing, query pro-cessing and optimization, and user interfaces. This paperprovides an overview of these aspects of the Lore system, aswell as other novel features such as dynamic structural sum-maries and seamless access to data from external sources.1 IntroductionTraditional database systems force all data to adhere to anexplicitly speci�ed, rigid schema. For many new databaseapplications there can be two signi�cant drawbacks to thisapproach:� The data may be irregular and thus not conform to arigid schema. In relational systems, null values typ-ically are used when data is irregular, a well-knownheadache. While complex types and inheritance inobject-oriented databases clearly enable more
exibil-ity, it can still be di�cult to design an appropriateobject-oriented schema to accommodate irregular data.� It may be di�cult to decide in advance on a single,correct schema. The structure of the data may evolverapidly, data elements may change types, or data notconforming to the previous structure may be added.These characteristics result in frequent schema modi-�cations, another well-known headache in traditionaldatabase systems.Because of these limitations, many applications involvingsemistructured data [Abi97] are forgoing the use of a data-base management system, despite the fact that manystrengths of a DBMS (ad-hoc queries, e�cient access, con-currency control, crash recovery, security, etc.) would bevery useful to those applications.As a popular �rst example, consider data stored on theWorld-Wide Web. At a typical Web site, data is variedand irregular, and the overall structure of the site changesoften. Today, very few Web sites store all of their avail-able information in a database system. It is clear, however,that Web users could take advantage of database support,e.g., by having the ability to pose queries involving datarelationships (which usually are known by the site's cre-ators but not made explicit). As a second example, con-sider information integrated from multiple, heterogeneousdata sources [Com91, LMR90, SL90]. Considerable e�ort istypically spent to ensure that the integrated data is well-structured and conforms to a single, uniform schema. Ad-ditional e�ort is required if one or more of the information�This work was supported by the Air Force Rome Laboratoriesand DARPA under Contracts F30602-95-C-0119 and F30602-96-1-031, and by equipment grants from IBM and Digital EquipmentCorporations.

sources changes, or when new sources are added. Clearly,a database system that easily accommodates irregular dataand changes in structure would greatly facilitate the rapidintegration of heterogeneous databases.This paper describes the implementation of the Lore sys-tem at Stanford University, designed speci�cally for manag-ing semistructured data. The data managed by Lore is notcon�ned to a schema, and it may be irregular or incomplete.In general, Lore attempts to take advantage of structurewhere it exists, but also handles irregular data as gracefullyas possible. Lore (for Lightweight Object Repository1) is fullyfunctional and available to the public.Lore's data model is a very simple, self-describing, nestedobject model called OEM (for Object Exchange Model), in-troduced originally in the Tsimmis project at Stanford[PGMW95]. One of our �rst challenges was to design aquery language for Lore that allows users to easily retrieveand update data with no �xed, known structure. Lorel, forLore Language, is an extension of OQL [Cat94, BDK92] thatintroduces extensive type coercion and powerful path ex-pressions for e�ectively querying semistructured data. OEMand Lorel are reviewed brie
y in this paper; for detailssee [AQM+96].Building a database system that accommodates semi-structured data has required us to rethink nearly every as-pect of database management. While the overall architec-ture of the system is relatively traditional, this paper high-lights a number of components that we feel are particularlyinteresting and unique.First, query processing introduces a number of challenges.One obvious di�culty is the absence of a schema to guidethe query processor. In addition, Lorel includes a powerfulform of navigation based on path expressions, which requiresthe use of automata and graph traversal techniques insidethe database engine. The indexing of semistructured dataand its use in query optimization is an interesting issue,particularly in the context of the automatic type coercionprovided by Lorel. As will be seen, despite these challengeswe are able to execute queries using query plans based pri-marily on familiar database operators. To accommodatesemistructured data at the physical level (as well as supportfor multimedia data such as video, postscript, gif, etc.) weimpose no constraints on the size or structure of atomic orcomplex objects. Meanwhile, however, the layout of objectson disk is tailored to facilitate browsing and the processingof path expressions.Perhaps the most novel aspects of Lore are the use ofDataGuides in place of a standard schema, and Lore's exter-nal data manager. A DataGuide is a \structural summary"of the current database that is maintained dynamically andserves several functions normally served by a schema. Forexample, DataGuides are essential for users to explore thestructure of the database and formulate queries. They alsoare important for the system, e.g., to store statistics and1Originally, \lightweight" referred both to the simple object modelused by Lore and to the fact that Lore was a lightweight system sup-porting single-user, read-only access. As will be seen, Lore is evolvingtowards a more traditional \heavyweight" DBMS in its functionality.

www.manaraa.com

guide query optimization. Finally, because one of the moti-vations for using a DBMS designed for semistructured datais to easily integrate data from heterogeneous informationsources (including the World-Wide Web), Lore includes anexternal data manager. This component enables Lore tobring in data from external sources dynamically as neededduring query execution, without the user being aware of thedistinction between local and external data.We have chosen to implement Lore from scratch, ratherthan building an extension to an existing DBMS to handlesemistructured data. Building our own complete DBMS al-lows us full control over all components of the system, sothat we can experiment easily with internal system aspectssuch as query optimization and object layout. In paral-lel, however, we are implementing our semistructured datamodel and query language on top of the O2 object orientedsystem [BDK92], in order to compare the implementatione�ort and performance against Lore. This paper focuses onLore, although the O2 implementation is discussed brie
y.1.1 Related WorkA preliminary version of the language Lorel was introducedin [QRS+95]. Details of the syntax and semantics of thecurrent version of Lorel can be found in [AQM+96]. A com-parison of Lorel against more conventional languages suchas OQL [Cat94], XSQL [KKS92], and SQL [MS93] appearsin [QRS+95]. Although the Lore system has been demon-strated [QWG+96], this is the �rst paper to describe imple-mentation aspects of Lore.The closest current system to Lore is UnQL [BDS95,BDHS96], which also is designed for managing semistruc-tured data and uses a data model similar to OEM. Whilethe UnQL query language is more expressive than Lorel, webelieve it is less user-friendly. Furthermore, UnQL work hasfocused primarily on aspects of the query language and itsoptimizations and, so far, less on system implementation. Amuch earlier system, Model 204 [O'N87], was based on self-describing record structures. As will be seen, the data modelused in Lore is more powerful in that it includes arbitraryobject nesting, and Lore's query language is richer than thelanguage of Model 204. Thus, query processing in Lore issigni�cantly di�erent than in Model 204, which concentratedon clever bit-mapped indexing structures. Furthermore, tothe best of our knowledge, Model 204 did not include con-cepts analogous to our DataGuides or external data.There have been a number of other proposals that in-vent or extend query languages roughly along the lines ofLorel, or that integrate traditional databases with semistruc-tured text data. Most of this work operates on strongly-typed data, or in some cases is designed speci�cally forthe World-Wide Web. Examples include [BK94, BCK+94,CACS94, CCM96, CM89, KS95, LSS96, MMM96, MW95,MW93, YA94]. For a more in-depth comparison of theselanguages and systems against Lore, see [AQM+96].1.2 Outline of PaperSection 2 reviews the data model and query language usedby Lore. Section 3 introduces the overall architecture andthe individual components of the Lore system. Query andupdate processing, optimization, and indexing are consid-ered in Section 4. Section 5 covers Lore's external datamanager and DataGuides. Section 6 describes the variousinterfaces to Lore for developers, users, and application pro-grams. Finally, Section 7 covers system status, describeshow to obtain the Lore system, and discusses current andfuture work.

2 Representing and Querying Semistructured DataTo set the stage for our discussion of the Lore system, we�rst introduce its data model and query language. For mo-tivation and further details see [AQM+96].2.1 The Object Exchange ModelThe Object Exchange Model (OEM) [PGMW95] is designedfor semistructured data. Data in this model can be thoughtof as a labeled directed graph. For example, the very smallOEM database shown in Figure 1 contains (�ctitious) infor-mation about the Stanford Database Group. The verticesin the graph are objects; each object has a unique objectidenti�er (oid), such as &5. Atomic objects have no outgo-ing edges and contain a value from one of the basic atomictypes such as integer, real, string, gif, java, audio, etc.All other objects may have outgoing edges and are calledcomplex objects. Object &3 is complex and its subobjectsare &8, &9, &10, and &11. Object &7 is atomic and hasvalue \Clark". Names are special labels that serve as aliasesfor objects and as entry points into the database. In Fig-ure 1, DBGroup is a name that denotes object &1. Anyobject that cannot be accessed by a path from some nameis considered to be deleted.In an OEM database, there is no notion of �xed schema.All the schematic information is included in the labels, whichmay change dynamically. Thus, an OEM database is self-describing, and there is no regularity imposed on the data.The model is designed to handle incompleteness of data, aswell as structure and type heterogeneity as exhibited in theexample database. Observe in Figure 1 that, for example:(i) members have zero, one, or more o�ces; (ii) an o�ce issometimes a string and sometimes a complex object; (iii) aroom may be a string or an integer.For an OEM object X and a label l, the expression X:ldenotes the set of all l-labeled subobjects of X. If X is anatomic object, or if l is not an outgoing label from X, thenX:l is the empty set. Such \dot expressions" are used in thequery language, described next.2.2 The Lorel Query LanguageIn this subsection we introduce the Lorel query language,primarily through examples. Lorel is an extension of OQLand a full speci�cation can be found in [AQM+96]. Here wehighlight those features of the language that have an impacton the novel aspects of the system|features designed specif-ically for handling semistructured data. Many other usefulfeatures of Lorel (some inherited from OQL and others not)that are more standard will not be covered.Our �rst example query introduces the basic buildingblock of Lorel: the simple path expression, which is a namefollowed by a sequence of labels. For example, DBGroup.Member.Office is a simple path expression. Its semanticsconsists of the set of objects that can be reached startingwith the DBGroup object, following an edge labeled Member,then following an edge labeled Office. Range variables canbe assigned to path expressions, e.g., \DBGroup.Member.Office X" speci�es that X ranges over the set of o�ces.Path expressions also can be used directly, in an SQL style,as in the example.The example query retrieves the o�ces of the older mem-bers of the group. The query, along with its answer for oursample database in Figure 1, follow. Note that in the queryresult, indentation is used to represent graph structure.QUERYselect DBGroup.Member.Officewhere DBGroup.Member.Age > 30

www.manaraa.com

Member

Name

Age

Project

Office
 Title
Office

Office

"Smith"
 "Gates 252"
 "Jones"
 28
 "Lore"

Member

Project

Building
 Room

"Gates"
 252

&8
 &10
 &12
 &13
 &15

&19
 &20

&6

Title

"Tsimmis"

&16

Project
Member

Building
 Room

"CIS"
 "411"

&17
 &18

Age

46

&9

&2

Name

"Clark"

&7

Project
Name

&3
 &4

&11
 &14

&5

DBGroup

Member

&1

Figure 1: An OEM databaseRESULTOffice "Gates 252"OfficeBuilding "CIS"Room "411"The database over which the query is evaluated presentsa number of irregularities, as discussed earlier. A guidingprinciple in Lorel is that, to write a query, one should nothave to worry about such irregularities or know the precisestructure of objects (e.g., the structure of o�ces), nor shouldone have to bother with precise types (e.g., the type of Age isinteger). This query will not yield a run-time error if an Ageobject has a string value or is complex, or if Ages or O�cesare single-valued, set-valued, or even absent for some groupmembers. Indeed, the above query will succeed no matterwhat the actual structure of the database is, and will returnan appropriate answer.The Lore query processor rewrites queries into a moreelaborate OQL style. For example, the previous query isrewritten by Lore to:select Ofrom DBGroup.Member M, M.Office Owhere exists A in M.Age : A > 30The Lore system then executes this OQL-style query, incor-porating certain features such as special coercion rules (seeSection 4.3) for the comparison A > 30.2Note that a from clause has been introduced in the rewrit-ten version of the query. (Omitting the from clause is a mi-nor syntactic convenience in Lorel; a similar shorthand wasallowed in Postquel [SK91].) Also note that the comparisonon Age has been transformed into an existential condition.This transformation occurs because all properties are set-valued in OEM. Thus, the user can write DBGroup.Member.Age > 30 regardless of whether Age is known to be single-valued, known to be set-valued, or unknown. We will see inSection 4 that an important �rst step of query processing inLorel is rewriting the query into an OQL-style as above.2We also are implementing Lorel on top of the O2 system basedon this translation to OQL; see Section 7 for a brief discussion.

Lorel o�ers a richer form of \declarative navigation" inOEM databases than simple path expressions, namely gen-eral path expressions. Intuitively, the user loosely speci�esa desired pattern of labels in the database: one can specifypatterns for paths (to match sequences of labels), patternsfor labels (to match sequences of characters), and patternsfor atomic values. A combination of these three forms ofpattern matching is illustrated in the following example:QUERYselect DBGroup.Member.Namewhere DBGroup.Member.Office(.Room%|.Cubicle)?like "%252"RESULTName "Jones"Name "Smith"Here the expression Room% is a label pattern that matchesall labels starting with the string Room, e.g., Room, Rooms,or Room68. For path patterns, the symbol \j" indicates dis-junction between two labels, and the symbol \?" indicatesthat the label pattern is optional. The complete syntax isbased on regular expressions, along with syntactic wildcardssuch as \#", which matches any path of length 0 or more.Finally, \like %252" speci�es that the data value shouldend with the string \252". The like operator is basedloosely on SQL. We also support grep (similar to Unix) andsoundex for phonetic matching.During preprocessing, simple path expressions are elimi-nated by rewriting the query to use variables, as in our �rstexample. It is not possible to do so with general path ex-pressions, which require a run-time mechanism (describedin Section 4.2). Indeed, note that if the database containscycles, then a general path expression may match an in�-nite number of paths in the data. When trying to matcha general path expression against the database, we matchthrough a cycle at most once, which appears to be a reason-able simpli�cation in practice.We conclude with two more examples that illustrate ad-vanced features of the language. The following query illus-trates subqueries and constructed results. It retrieves thenames of all members of the Lore project, together withtitles of projects they work on other than Lore.

www.manaraa.com

Physical

Storage

External,

Read-only

Data

Sources

Query Compilation

Data Engine

Results

Non-Query

Requests

Utilities

 -DataGuide Mgr

 -Loader

 -Index Mgr

Query

Operators

Object

Manager

External Data

Manager

Query

Optimizer

Query Plan

Generator

Preprocessing

(Lorel to OQL)

Parsing

HTML GUI

Textual

Interface

API

Applications

Lore

System
Queries

Figure 2: Lore architectureQUERYselect M.Name,(select M.Project.Titlewhere M.Project.Title != "Lore")from DBGroup.Member Mwhere M.Project.Title = "Lore"RESULTMemberName "Jones"Title "Tsimmis"Over a larger database, this query would construct oneMember object for each group member in the result, con-taining the member's Name and a Title for each qualifyingproject.A Lore database is modi�ed using Lorel's declarative up-date language, as in the following example:update P.Member +=(select DBGroup.Memberwhere DBGroup.Member.Name = "Clark")from DBGroup.Project Pwhere P.Title = "Lore" orP.Title = "Tsimmis"This update adds all group members named Clark asmembers of the Lore and Tsimmis projects. Intuitively, thefrom and where clauses are �rst evaluated, providing bind-ings for P . For each binding, the expression \P.Member +="speci�es to add Member edges between P and every objectreturned by the subquery. In general, the update languagesupports the insertion and removal of edges, the creation ofnew vertices (objects), and the modi�cation of atomic valuesand name assignments. (As mentioned earlier, object dele-tion is by unreachability, i.e., garbage collection, so there isno explicit delete operation.)Lorel also o�ers grouping and aggregate functions in thestyle of OQL, external functions and predicates, and a pow-

erful bulk loading facility that allows merging new data intoan existing database. There is also a means of attachingvariables to certain objects on paths, or even to the labelsor paths themselves (in the style of the attribute and pathvariables of [CACS94]), which yields a rich mechanism forstructure discovery. Such features, described in [AQM+96],are beyond the scope of this paper.3 System ArchitectureThe basic architecture of the Lore system is depicted in Fig-ure 2. This section gives a brief introduction to the com-ponents that make up Lore. More detailed discussions ofindividual components appear in subsequent sections.Access to the Lore system is through a variety of applica-tions or directly via the Lore Application Program Interface(API). There is a simple textual interface, primarily usedby the system developers, but suitable for learning systemfunctionality and exploring small databases. The graphicalinterface, the primary interface for end users, provides pow-erful tools for browsing query results, a DataGuide featurefor seeing the structure of the data and formulating sim-ple queries \by example," a way of saving frequently askedqueries, and mechanisms for viewing the multimedia atomictypes such as video, audio, and java. These two interfacemodules, along with other applications, communicate withLore through the API. Details of interfaces are discussed inSection 6.The Query Compilation layer of the Lore system consistsof the parser, preprocessor, query plan generator, and queryoptimizer. The parser accepts a textual representation of aquery, transforms it into a parse tree, and then passes theparse tree to the preprocessor. The preprocessor handles thetransformation of the Lorel query into an OQL-like query(recall Section 2.2). A query plan is generated from thetransformed query and then passed to the query optimizer.In addition to doing some (currently simple) transformationson the query plan, the optimizer also decides whether the

www.manaraa.com

use of indexes is feasible. The optimized query plan is thensent to the Data Engine layer.The Data Engine layer houses the OEM object manager,query operators, external data manager, and various utili-ties. The query operators execute the generated query plansand are explained in Section 4. The object manager func-tions as the translation layer between OEM and the low-level �le constructs. It supports basic primitives such asfetching an object, comparing two objects, performing sim-ple coercion, and iterating over the subobjects of a complexobject. In addition, some performance features, such as acache of frequently accessed objects, are implemented in thiscomponent. The index manager, external data manager,and DataGuide manager are discussed in Sections 4.3, 5.1,and 5.2 respectively. Finally, bulk loading and physical ob-ject layout on disk are discussed in Section 4.5.4 Query and Update Processing in LoreAs depicted in Figure 2, the basic steps that Lore followswhen answering a query are: (1) the query is parsed; (2) theparse tree is preprocessed and translated into an OQL-likequery; (3) a query plan is constructed; (4) query optimiza-tion occurs; and (5) the optimized query plan is executed.Query processing in Lorel is fairly conventional, with somenotable exceptions:� Because of the
exibility of Lorel, the preprocessing ofthe parse tree to produce the OQL-like query is com-plex. We have implemented the speci�cation describedin [AQM+96] and we will not discuss the issue furtherhere.� Although the Lore engine is built around standard op-erators (such as Scan and Join), some take an original
avor. For example, Scanmay take as argument a gen-eral path expression, and therefore may entail complexsearches in the database graph.� A unique feature of Lore is its automatic coercion ofatomic values. Coercion has an impact on the imple-mentation of comparators (e.g., = or <), but moreimportantly we shall see that it has important e�ectson indexing.The result of a Lorel query is always a set of OEM ob-jects, which become subobjects of a newly created Resultobject. The Result object is returned through the API. Theapplication may then use routines provided by the API totraverse the result subobjects and display them in a suitablefashion to the user.To illustrate the sequence of steps that Lore follows whenanswering a query, we will trace an example through queryplanning and then discuss the operators used to execute thequery plan. Consider the query introduced in Section 2,whose OQL-like version is:select Ofrom DBGroup.Member M, M.Office Owhere exists A in M.Age : A > 30The initial query plan generated for this query is given inFigure 3. Before discussing the various operators in thisplan, it is necessary to �rst understand the
ow of controland the auxiliary data structures used when executing sucha plan.4.1 Iterators and Object AssignmentsOur query execution strategy is based on familiar databaseoperators. We use a recursive iterator approach in query

processing, as described in, e.g., [Gra93]. With iterators,execution begins at the top of the query plan, with each nodein the plan requesting a tuple at a time from its children andperforming some operation on the tuple(s). After a nodecompletes its operation, it passes a resulting tuple up to itsparent. For many operators, an iterator approach avoidscreation of temporary relations.The \tuples" we operate on are Object Assignments, orOAs. An OA is a simple data structure containing slots cor-responding to range variables in the query, along with someadditional slots depending on the form of the query. Forexample, the OA slots for the example query are shown inFigure 4. Intuitively, each slot within an OA will hold theoid of a vertex on a data path currently being consideredby the query engine. For example, if OA1 holds the oid formember \Smith", then OA2 and OA3 can hold the oids forone of Smith's O�ce subobjects and one of his Age subob-jects, respectively. Note that at a given point during queryprocessing, not all slots of the current OA necessarily con-tain a valid oid. Indeed, the goal of query execution is tobuild complete OAs. Once a valid OA reaches the top of thequery plan, oids in appropriate slots are used to construct acomponent of the query result.4.2 Query OperatorsWe now brie
y explain the query operators appearing asnodes in Figure 3; query operators not appearing in thisplan are discussed later. Each operator takes a number ofarguments, with the last argument being the OA slot thatwill contain the result of the operation. Exceptions to thisare the Select and Project operators, which do not have atarget slot.The Scan operator, which is used in several leaf nodes,is similar in functionality to a relational scan. Here, how-ever, instead of scanning the set of tuples in a relation, ourscan returns all oids that are subobjects of a given object,following a speci�ed path expression. The Scan operator isde�ned as:Scan (StartingOASlot, Path_expression,TargetOASlot)Scan starts from the oid stored in the StartingOASlot, andat each iteration places into the TargetOASlot the oid ofthe next subobject that satis�es the Path expression, untilthere are no more matching subobjects. Note that in mostcases Path expression consists of a single label, however itmay be a complex data structure representing an arbitrarycomponent of a general path expression (recall Section 2.2),essentially a regular expression. For the regular expressionsthat we currently support, it is su�cient for the Scan op-erator to keep a run-time stack of objects visited in orderto match the Path expression. However, for general regu-lar expressions a �nite-state automaton is required. Recallthat to avoid in�nite numbers of matching paths, we matchacyclic paths in the data only. Currently, the Scan operatorcan avoid traversing a cycle by ensuring that no oid appearsmore than once on its stack. Since the stack grows no largerthan acyclic paths in the database, we do not expect its sizeto be a problem.As a simple example of the Scan operator, consider thefollowing node from our example plan:Scan (OA1, "Office", OA2)This iterator will place into slot OA2, one at a time, allO�ce subobjects of the object appearing in slot OA1. Notethe special form for the lower left Scan:Scan (Root, "DBGroup", OA0)

www.manaraa.com

Select

(OA4
 = TRUE)

Aggr

(Exists, OA3, OA4)

Scan

(OA0,"Member",OA1)

Scan

(OA1,"Office",OA2)

Select

(OA3 > 30
)

Scan

(OA1,"Age",OA3)

Project

(OA2)

Scan

(Root,"DBGroup",OA0)

Join

Join

Join

Figure 3: Example Lore query planOA0 OA1 OA2 OA3 OA4(DBGroup) (OA0.Member) (OA1.O�ce) (OA1.Age) (true/false)Figure 4: Example object assignmentInstead of using an OA slot as the �rst argument, the valueRoot, which is a system-known object from which all names(such as DBGroup) can be reached, is used.The Join, Project, and Select nodes are nearly identicalto their corresponding relational operators. Like a relationalnested-loop join, the Join node coordinates its left and rightchildren. For each partially completed OA that the left childreturns, the right child is called exhaustively until no morenew OAs are possible. Then the left child is instructed toretrieve its next (partial) OA. The iteration continues untilthe left side produces no more OAs. The Project node is usedto limit which objects should be returned by specifying a setof OA slots, while the Select node applies a predicate to theobject identi�ed by the oid in the OA slot speci�ed.The Aggregation node (shown in Figure 3 on the rightside of the query plan as Aggr) is used in a somewhat novelway, since it implements quanti�cation as well as aggrega-tion. At a high level, the aggregation node calls its childexhaustively, storing the results temporarily or computingthe aggregate incrementally. When the child can produceno more valid OAs, a new object is created whose value isthe �nal aggregation; this new object is identi�ed within thetarget OA slot. In the example shown, the aggregation nodeadds to the target slot (OA4) the result of the aggregation,which here is the value true if the existential quanti�cationis satis�ed (an object exists in OA3) and false otherwise.Filtering of OAs whose quanti�cation is true occurs in theSelect node immediately above the aggregation node. Notethat the exists aggregation operator \short circuits" when it�nds the �rst satisfying OA, while other aggregation opera-tors may need to look at all OAs.There are four other primary query operators in Lore,in addition to operators for plans that use indexes (see Sec-tion 4.3): SetOp, ArithOp, CreateSet, and Groupby. SetOphandles the Lorel set operations Union, Intersect, and Ex-cept. Likewise, ArithOp handles arithmetic operations suchas addition, multiplication, etc. CreateSet is used to pack-age the results of an arbitrary subquery before proceeding;it calls its child exhaustively, storing each oid returned aspart of a newly created complex object. After the child hasproduced all possible OAs, the CreateSet operator stores the

oid for the new set of objects within the target slot in theOA. Finally, the Groupby operator handles (sub)queries thatinclude a groupby expression.To give a more in-depth
avor of query plan construction,we consider a second query. This query asks for the namesand the number of publications for each database groupmember who is in the Computer Science (\CS") department.3select M.Name, count(M.Publication)from DBGroup.Member Mwhere M.Dept = "CS"It is important to note that both M.Name and M.Publicationappearing in the select clause are sets of objects, and inthe general case are represented by subqueries. Thus, theOQL-like translation of this query is:select (select N from M.Name N),count(select Pfrom M.Publication P)from DBGroup.Member Mwhere exists D in M.Dept : D = "CS"To see the construction of the query plan, refer to Figure 5.The subtree for the from clause is constructed �rst. Eachsimple path expression (or range variable) appearing withinthe from becomes a Scan node. If several of these exist,then a left-deep tree of Scan nodes with Join nodes con-necting them is constructed. At the top of the from subtreea Join node connects the from clause with the subtree forthe where clause. For where, each exists becomes a Select,Aggr, and Scan node, and each predicate becomes a Selectnode. Finally, for the select clause, another Join node isadded to the top of the tree, and the query plan subtree forthe select clause becomes the right child.Let us further consider the subtree for the select clause.The plans for the two expressions constituting the selectclause are combined via union (using the SetOp operator).3Several of our group members are in the Electrical Engineeringdepartment.

www.manaraa.com

Select

(OA3
 = TRUE)

Aggr

(Exists, OA2, OA3)

Select

(OA2 = "CS"
)

Scan

(OA1,"Dept",OA2)

Join

Scan

(OA0,"Member",OA1)

Scan

(Root,"DBGroup",OA0)

Join

Join

Scan

(OA0,"Member",OA1)

Scan

(Root,"DBGroup",OA0)

Join

From clause

From and Where clauses

Final Query Plan

Scan

(OA0,"Member",OA1)

Scan

(Root,"DBGroup",OA0)

Join

Join

Project

(OA7)

Aggr

(Count, OA6, OA7)

Scan

(OA1,"Publications",

OA6)

CreateSet

(OA4, OA5)

Scan

(OA1,"Name",OA4)

SetOp

(Union,OA5,

OA6, OA7)

Select

(OA3
 = TRUE)

Aggr

(Exists, OA2, OA3)

Select

(OA2 = "CS")

Scan

(OA1,"Dept",OA2)

Figure 5: Steps in constructing a query planThus, each (complex) object in the result contains the setof all Name subobjects of a Member (the left subtree of theUnion), together with the count of all publications for thatmember. (In Lorel, a select list indicates union, while or-dered pairs would be achieved using a tuple constructor op-erator [AQM+96].) The CreateSet operator, described ear-lier, is needed to obtain all Name children of a given memberbefore returning its object assignment up the query tree. ACreateSet operator is not used in the right subtree, however,since the Aggregation operator by de�nition already calls itssubquery to exhaustion (and then applies the aggregationoperator, in this case count) before continuing.4.3 Query Optimization and IndexingThe Lore query processor currently implements only a fewsimple heuristic query optimization techniques. For exam-ple, we do push selection operators down the query tree, andin some cases we eliminate or combine redundant operators.In the future, we plan to consider additional heuristic op-timizations, as well as the possibility of truly exploring thesearch space of feasible plans.Despite the lack of sophisticated query optimization, Loredoes explore query plans that use indexes when feasible. Ina traditional relational DBMS, an index is created on anattribute in order to locate tuples with particular attributevalues quickly. In Lore, such a value index alone is not suf-�cient, since the path to an object is as important as thevalue of the object. Thus, we have two kinds of indexes inLore: a link (edge) index, or Lindex, and a value index, orVindex. A Lindex takes an oid and a label, and returns theoids of all parents via the speci�ed label. (If the label isomitted all parents are returned.) The Lindex essentiallyprovides \parent pointers," since they are not supported byLore's object manager. A Vindex takes a label, operator,and value. It returns all atomic objects having an incom-ing edge with the speci�ed label and a value satisfying thespeci�ed operator and value (e.g., < 5). Because Vindexes

arg2arg1 string real intstring � string ! real both! realreal string ! real � int! realint both! real int! real �Table 1: Coercion for basic comparison operatorsare useful for range (inequality) as well as point (equality)queries, they are implemented as B+-trees. Lindexes, onthe other hand, are used for single object lookups and thusare implemented using linear hashing [Lit80].Used in conjunction, these two kinds of indexes enablequery processing in Lore to avoid the standard Scan opera-tor. Before examining query plans that exploit indexes, we�rst take a more detailed look at Vindexes and how theyhandle the coercion present in Lorel.4.3.1 Value IndexesValue indexing in Lore requires some novel features due toits non-strict typing system. When comparing two valuesof di�erent types, Lore always attempts to coerce the val-ues into comparable types. Currently, our indexing systemdeals with coercions involving integers, reals, and stringsonly. Table 1 illustrates the coercion that Lore performs forthese types; note that we simplify the situation by alwayscoercing integers to reals. Now, in order to use Vindexesfor comparisons, Lore must maintain three di�erent kindsof Vindexes:1. A String Vindex, which contains index entries for allstring-based atomic values (string, HTML, URL, etc.).2. A Real Vindex, which contains index entries for allnumeric-based atomic values (integer and real).

www.manaraa.com

Lindex

(OA2,"Age",OA1)

Named_Obj

("DBGroup", OA0)

Project

(OA3)

Vindex

("Age", >, 30, OA2)

Join

Once

(OA1)

Join

Join

Lindex

(OA1,"Member",OA0)

Scan

(OA1,"Office",OA3)
Figure 6: A query plan using indexes3. A String-coerced-to-real Vindex, which contains all stringvalues that can be coerced into an integer or real (storedas reals in the index).For each label over which a Vindex is created, three separateB+-trees, one for each type, are constructed.When using a Vindex for a comparison (e.g., �nd all Ageobjects > 30), there are two cases to consider, based uponthe type of comparison value:1. If the value is of type string, then: (i) do a lookup inthe String Vindex; (ii) if the value can be coerced toa real, then also do a lookup for the coerced value inthe Real Vindex.2. If the value is of type real (or integer), then: (i) do alookup in the Real Vindex; (ii) also do a lookup in theString-coerced-to-real Vindex.4.3.2 Index Query PlansIf the user's query contains a comparison between a pathexpression and an integer, real, or string (e.g., \DBGroup.Member.Age > 30"), and the appropriate Vindexes and Lin-dexes exist, then a query plan that uses indexes will be gen-erated. For simplicity, let us consider only queries in whichthe where clause consists of one such comparison.Query plans using indexes are di�erent in shape fromthose based on Scan operators. Intuitively, index plans tra-verse the database bottom-up, while scan-based plans per-form a top-down traversal. An index query plan �rst locatesall objects with desired values and appropriately labeled in-coming edges via the Vindex. A sequence of Lindex oper-ations then traverses up from these objects attempting tomatch the full path expression in the comparison.4 Notethat once we have an OA that satis�es the where clause,it may be necessary to use one or more Scan operations to�nd those components of the select expression that do notappear in the where clause.Let us consider the following query (in its OQL-like form),�rst introduced in Section 2:4An obvious alternative is to use full path indexes in place of theLindex. Path indexes would be (much) more expensive to maintainbut (much) faster at query time. Path indexes are discussed in moredetail in [GW97].

select Ofrom DBGroup.Member M, M.Office Owhere exists A in M.Age : A > 30A query plan using indexes is shown in Figure 6. This planintroduces four new query operators: Vindex, Lindex, Once,and Named Obj. The Vindex operator, which appears asthe left child of the second Join operator, iteratively �ndsall atomic objects with value less than 30 and an incomingedge labeled Age, placing their oids in slot OA2. The Lindexoperator that appears below the Once operator iterativelyplaces into OA1 all parents of the object in OA2 via an Ageedge. (Since OEM data may have arbitrary graph structure,the object could potentially have several parents via Age, aswell as parents via other labels.) Since Age is existentiallyquanti�ed in the query, we only want to consider each par-ent once, even if it has several Age subobjects; this is thepurpose of the Once query operator. The second Lindexoperator �nds all parents of the OA1 object via a Memberedge, placing them in OA0. Since we want the object inOA0 to be the named object DBGroup, the Named Obj op-erator checks whether this is so. Once we have traversedup the database using index calls and constructed a validOA, we �nally use a Scan operator to �nd all Office sub-objects, which are returned as the result via the topmostProject operator.Currently, for processing where clauses, Lore only consid-ers subplans that are completely index-based (i.e., bottom-up), such as the one discussed here, or subplans that arecompletely Scan-based (i.e., top-down), such as the one inFigure 3. An interesting research topic that we have just be-gun to address is how to combine both bottom-up (index)and top-down (Scan) traversals. When the two traversalsreach a prede�ned \meeting point", the intersection of theobjects discovered by the index calls and the Scan operatorsidentify paths that satisfy the where clause. The appropri-ate meeting point depends on the \fan-in" and \fan-out" ofthe vertices and labels in the database, and requires the useof statistical information.4.4 Update Query PlansThanks to query plan modularity, we were able to handlearbitrary Lorel update statements by adding a single opera-tor, Update, to the query execution engine. We illustrate theapproach with our example update query from Section 2.2:

www.manaraa.com

Query plan to find all projects with

the title "Lore" or "Tsimmis",

results placed in OA1

Query plan to find all members

with name "Clark", results

placed in OA5

Update

(Create_Edge, OA1,

OA5, "Member")
Figure 7: Example update query planupdate P.Member +=(select DBGroup.Memberwhere DBGroup.Member.Name = "Clark")from DBGroup.Project Pwhere P.Title = "Lore" orP.Title = "Tsimmis"The query plan is outlined in Figure 7. The left subtree ofthe Update node computes the from and where clauses of theupdate. In our example, the left subtree �nds those projectswith title \Lore" or \Tsimmis". For each OA returned, theright subtree is called to evaluate the query plan for the sub-query to the right of +=. (Other valid update assignmentoperators are := and -= [AQM+96]). In our example, theright subtree �nds those members whose name is \Clark".Once the right subtree completes the OA, the Update nodeperforms the actual update operation; valid operations areCreate Edge, Destroy Edge, and Modify Atomic. In our ex-ample, the Update node creates an edge labeled Member be-tween each pair of objects identi�ed by its subtrees. Clearlya number of optimizations are possible in update process-ing. For instance, in our example the right subtree of theUpdate node is uncorrelated with the left subtree and thusneeds to be executed only once. We currently perform thisoptimization, and we are investigating others.4.5 Bulk Loading and Physical StorageData can be added to a Lore database in two ways. Eitherthe user can issue a sequence of update statements to addobjects and create labeled edges between them, or a load �lecan be used. In the latter case, a textual description of anOEM database is accepted by a load utility, which includesuseful features such as symbolic references for shared sub-objects and cyclic data, as well as the ability to incorporatenew data into an existing database.Lore arranges objects in physical disk pages; each pagehas a number of slots with a single object in each slot. Sinceobjects are variable-length, Lore places objects accordingto a �rst-�t algorithm, and provides an object-forwardingmechanism to handle objects that grow too large for theirpage. In addition, Lore supports large objects that may spanmany pages; such large objects are useful for our multimediatypes, as well as for complex objects with very broad fan-out. Objects are clustered on a page in a depth-�rst manner,primarily because our Scan-based plans traverse the data-base depth-�rst. It is obviously not always possible to keepall objects close to their parents since an object may haveseveral parents. For now, if an object has multiple parentsthen it is stored with an arbitrary parent. Finally, if anobject o cannot be reached via a path originating from anamed object, then o is deleted by our garbage collector.5 Novel FeaturesThis section provides brief overviews of two novel featuresof Lore: the external data manager and DataGuides. Dueto space constraints, coverage is cursory, but should give the

reader a
avor of these components. For further details onthe external data manager see [MW97]. Further details onDataGuides can be found in [GW97].5.1 External DataLore's external data manager enables dynamic retrieval ofinformation from other data sources based on queries issuedto Lore. The externally obtained data is combined with res-ident Lore data during query evaluation, and the distinctionbetween the two types of data is invisible to the user. (Thus,external data in Lore provides a way to query distributedinformation sources by essentially transforming Lore into aninformation integration engine.) An external object storedwithin a Lore database functions as both a placeholder forthe external data, and speci�es how Lore interacts with theexternal data source. During query processing, when theexecution engine discovers an external object, informationis fetched from the external source to answer the query, andthe fetched information is cached within the Lore databaseuntil it becomes \stale."Clearly there are many possible approaches that can betaken to integrate external data in this fashion. Our mainmotivation in choosing the approach outlined below was toenable Lore to bring in data from a wide variety of exter-nal sources, and to introduce a variety of argument typesand optimization techniques to limit the amount of datafetched from an external source to that which is immedi-ately useful in answering a given query. Because the re-lated Tsimmis project at Stanford has focused on build-ing \wrappers" that provide OEM interfaces to arbitrarydata sources [PGGMU95], we are able to easily exploit suchsources as external data in Lore.In Figure 8, we see the logical and physical views of asmall database with an external object (shaded in the �g-ure). The logical view is that seen by the user, as if theexternal data is stored in Lore. The physical view showshow Lore encodes the information associated with an ex-ternal source, along with any fetched data. The sampledatabase contains information about member \Jim", whereJim's publication information is obtained externally. Dur-ing query processing, the Scan operator noti�es the externaldata manager whenever an external object is encountered.The external data manager may need to fetch informationfrom the external source, and will provide back to the Scanoperator zero or more oids that are used in place of the oidof the external object. Query processing then proceeds asnormal.The physical view in Figure 8, simpli�ed from the ac-tual implementation, shows that the speci�cation for an ex-ternal object includes: (i) the location of a Wrapper pro-gram that fetches the external data and translates it intoOEM, (ii) a Quantum that indicates the time interval untilfetched information becomes stale, and (iii) a set of Argu-ments that are used to limit the information fetched in acall to the external source. Arguments sent to the externalsource can come from three places: the query being pro-cessed (query-de�ned), values of other objects in the localdatabase (data-de�ned), or constant values tied to the exter-

www.manaraa.com

Subgraph

containing

all of Jim's

Publications

Fetched

"Jim"

120

"Data

Defined"

Physical View
Logical View

Fetched

Data

"Pub_Fetch.o"

"Query

Defined"

"Keyword"

Name
 Publications

Member

"Jim"

Name
 Publications

Member

Quantum

Wrapper

Arg1

Type

Value

Arg2

Type
 Query Label
Figure 8: The logical and physical views of the datanal object (hard-coded). Example data-de�ned and query-de�ned arguments can be seen in Figure 8 as Arg1 andArg2 respectively. The value of the atomic object pointedto by the Value edge from Arg1 is sent to the data sourceas one argument. In the query-de�ned argument speci�ca-tion, the Query Label object with value \Keyword" speci-�es that if the query being processed has a predicate of theform \Member.Publications.Keyword = X", then X is sentto the external data source as another argument.Many calls to an external source can quickly dominatequery processing time. We brie
y mention two of the waysour external data manager attempts to limit the number ofcalls. First, if a single query will result in multiple callsto an external source (due to multiple bindings for data-de�ned and/or query-de�ned arguments), then we have amechanism for recognizing when a call to an external sourcewill subsume another scheduled call with a di�erent argu-ment set, and we eliminate the second call. Second, we trackthe argument sets used by previous queries and determinewhen previously fetched (non-stale) information partially orentirely subsumes information required by the current argu-ment set. A more detailed description of argument sets andoptimizations appears in [MW97].5.2 DataGuidesSince a Lore database does not have an explicit schema,query formulation and query optimization are particularlychallenging. Without some knowledge of the structure of theunderlying database, writing a meaningful Lorel query maybe di�cult, even when using general path expressions. Onemay manually browse a database to learn more about itsstructure, but this approach is unreasonable for very largedatabases. Further, without information about the struc-ture of the database, the query processor may be forced toperform more work than necessary. For example, considerthe query plan discussed in Section 4, which �nds the o�cesof all group members older than 30. Even if no membershave an o�ce, the query plan would needlessly examine ev-ery member in the database.A DataGuide is a concise and accurate summary of the
Age

Project

Office

Project

Member

Building
 Room

Title

DBGroup

Member

Name

Figure 9: A DataGuide for Figure 1structure of an OEM database, stored itself as an OEM ob-ject. Each possible path expression of a database is encodedexactly once in the DataGuide, and the DataGuide has nopath expressions that do not exist in the database. In typ-ical situations, the DataGuide is signi�cantly smaller thanthe original database. Figure 9 shows a DataGuide for thesample OEM database from Figure 1. In Lore, a DataGuideplays a role similar to metadata in traditional database sys-tems. The DataGuide may be queried or browsed, enablinguser interfaces or client applications to examine the struc-ture of the database. As will be seen in the next section, aninteractive DataGuide is an important part of Lore's Webinterface. Assuming the role of the missing schema, theDataGuide can also guide the query processor. Of course,

www.manaraa.com

in relational or object-oriented systems the schema is explic-itly created before any data is loaded; in Lore, DataGuidesare dynamically generated and maintained over all or partof an existing database.For a given OEM database, there are many DataGuidesthat satisfy the desired properties speci�ed above (accuracyand conciseness). For example, in Figure 9 we could fuseall leaf objects into a single object without changing thefact that every path expression is encoded exactly once (andwithout adding super
uous paths). It turns out that certainDataGuides are much easier to keep consistent in responseto updates to the underlying database. In addition, someDataGuides support storage of annotations within objects:properties of the set of objects reachable by a path expres-sion in the original database. We store an annotation fora given path expression by assigning it to the single objectin the DataGuide reachable by that path expression. An-notations are useful, e.g., for storing sample atomic valuesreachable via a given path expression, or for specifying thestatistical chances of �nding an outgoing edge with a certainlabel.In [GW97], formal de�nitions for DataGuides are pro-vided as well as algorithms to build and incrementally main-tain DataGuides that support annotations. Also given is adiscussion of how DataGuides aid query formulation in prac-tice and their use for query optimization.6 Interfaces to LoreAs shown in Figure 2, the Lore Application ProgrammingInterface (API) provides a gateway between Lore and anyuser interface or client application. It is used, for instance,by the system's textual interface, which passes user com-mands to Lore and presents query results in a hierarchicaldisplay. After summarizing the API, we describe a Java-based Web interface that makes Lore simple to use in aninteractive fashion.6.1 Application Programming InterfaceThe Lore API is composed of a small collection of C++classes. For any client, Lore is simply viewed as a singlelibrary, accessible through the API classes and methods de-clared in a single header �le. (Eventually we hope to moveLore toward a traditional client-server model.) At the high-est level, the API allows a client program to connect to aLore database, submit queries and commands, and processquery results.Any session with a Lore database is encapsulated in aninstance of the LoreConnection class. A client will �rstConnect to a speci�c database (and eventually Disconnectwhen �nished). Clients submit Lorel queries using theSubmit function. Submit is also used for other Lore sys-tem commands, such as index creation and updates. Whencalled with a Lorel query, Submit returns the query result asa LoreOem object. A LoreOem instance initially contains onlyan oid; the actual value is fetched from the database on de-mand. For atomic objects, a client may request the Type andValue of the object. To traverse the subobjects of a complexobject, a client instantiates a LoreIterator. Each succes-sive call to the iterator's Next method returns a di�erentLoreOem subobject and its Label. By nesting LoreIteratorinstances, a client may perform arbitrary traversals of OEMobjects.6.2 Web InterfaceA user connects to our graphical Web interface by visit-ing a speci�c URL and choosing a database. The user is

Figure 10: A DataGuide in Javathen presented with a Java program featuring a DataGuide,as described in Section 5.2. Users can quickly and easilybrowse the DataGuide to explore the structure of the under-lying database. Through the Web interface, the user maysubmit a textual Lorel query or select a sample prewrit-ten query. Furthermore, in a style similar to Query-By-Example [Zlo77], queries may be formulated and submittedwithout any knowledge of Lorel by using the DataGuideto select path expressions and specify selection conditions.Currently, DataGuide queries can express Lorel queries withsimple path expressions and a where clause that is conjunc-tive with respect to unique path expressions.As an example, Figure 10 is a screen snapshot of theJava presentation of a DataGuide. This DataGuide summa-rizes an existing database for Stanford's Database Group,similar in structure to (but much larger than) the sampledatabase used throughout this paper. Arrows accompanycomplex objects and are used to expand or collapse sub-objects. Also, a diamond is associated with each displayedlabel, corresponding to a unique path expression from theroot. When the user clicks on a diamond, a dialog boxpops up, from which the user may view sample values, se-lect the path expression for the query result, or add �lteringconditions. When the user selects a path expression, thecorresponding diamond is rendered in a di�erent color. Fil-tering conditions are displayed next to the corresponding la-bel. The DataGuide shown in Figure 10 represents a queryto select all group members that are PhD students, have aresearch interest in semistructured data, and have been atStanford more than one year but less than six. When theuser clicks Go, the Java program automatically generates anequivalent Lorel query and sends it to Lore to be processed.

www.manaraa.com

Regardless of how a query is submitted, the interface dis-plays query results in HTML, in a hierarchical format thatis easy to read and navigate. By formatting OEM objects inHTML, we can leverage Web browser support for our multi-media data (such as gif �les, audio, or video). To make thehierarchical display of OEM more readable, we perform twosmall presentation transformations. First, if several objectsshare the same label, we display the label only once andshow the values of the objects underneath it. For example,if a query result contains ten objects, each with the samelabel Project, we create an HTML page that begins witha single header Projects, followed by the values for all tenprojects. Second, we present complex OEM objects as ac-tive hyperlinks. Clicking on the link brings up a new HTMLpage showing the subobjects of that complex object.7 System Status and Future WorkAs of June 1997, the Lore system is functional and robust fora large subset of the Lorel language. It consists of approxi-mately 60,000 lines of C++ code. Some language features,such as external predicates and functions, are still underimplementation. Also, general path expressions are not yetimplemented in their full generality, although a substantialand very useful subset is.A Lore server with sample databases is available for pub-lic use. Users can submit queries and can experiment withfeatures such as DataGuides and result browsing. To visitour on-line demo, see http://www-db.stanford.edu/lore.In addition, Lore system binaries for several platforms areavailable through the Web page.We are considering many possible enhancements and ex-tensions to Lore, as follows.7.1 Compatibility and InteroperabilityAs mentioned in Section 2 and covered in detail in [AQM+96],OEM and Lorel can be translated to ODMG and OQL[Cat94]. In the translation, OEM objects are representedby ODMG objects, while Lorel queries are transformed intopure OQL queries that use method calls to handle Lorelfeatures such as type coercion and general path expressions.As a proof-of-concept for the translation, we have imple-menting Lorel on top of the O2 object-oriented databasemanagement system [BDK92]. Note that this implemen-tation enables the storage of semistructured (OEM) andstructured (ODMG) data in a single repository, providinga useful setting in which we are studying integration of thetwo data models. We also plan to explore how Lorel couldbe translated to SQL3 and thus implemented on top of anobject-relational database management system.7.2 Performance IssuesTo date we have done little performance analysis of Lore.There are a number of performance aspects we want to con-sider, such as overall performance and bottlenecks in the sys-tem, scalability of the system to extremely large databases,and comparing the performance of Lore against our imple-mentation of Lorel on top of O2 (see Section 7.1).There is signi�cant additional research to do in queryoptimization, including query rewriting, operation ordering,selecting the best use of indexes in query plans, and exploit-ing information stored in the DataGuide.As described in Section 4.3, we can build in Lore a linkindex (Lindex) in order to quickly �nd all parents of a givenobject reachable via a given label. Alternatively, we couldinstead augment our storage manager to store with objectstheir inverse (parent) pointers in addition to their subobject

(child) pointers. We plan to compare the performance of astorage manager with inverse pointers to that of our currentapproach based on Lindexes. We also plan to consider us-ing path indexes in place of the Lindex. Interestingly, thefunctionality of path indexes is incorporated easily into theDataGuide, as discussed in [GW97].Currently all \expansions" of path expressions in querypaths are done at run-time. However, for some classes ofpath expressions, it is possible to use information in theDataGuide to expand the regular expressions to all pos-sible completions at query compilation time. We plan toexplore the compile-time approach and compare its perfor-mance against the run-time approach we now take.7.3 New FunctionalityWe are in the process of implementing transaction supportfor concurrency control and recovery. As with other aspectsof Lore, the semistructured nature of Lore's data is requiringus to rethink some aspects of traditional solutions.In the user interface area, we plan to increase the expres-siveness of DataGuide queries toward the full power of Lorel.In addition, to follow the recent trend of enabling databasesystems to dynamically generate customized HTML displaysof query results [Gaf97, BDK92], we plan to investigate moresophisticated techniques for customizing the presentation ofOEM objects in a Web environment.In a companion project, we have extended OEM andLorel in order to treat changes to the data as a �rst-classconcept [CAW97], similar to the Heraclitus system that op-erates on structured data [GHJ96]. Currently we are imple-menting this model and language on top of the Lore system.Initial work is underway to de�ne both view and triggermechanisms appropriate for semistructured data, and to im-plement them in Lore. (See [AGM+97] for a discussion ofviews in the context of OEM and Lorel.) Finally, becausemany applications appropriate for a semistructured DBMSsuch as Lore include a signi�cant amount of text data, weplan to incorporate a special text type along with a full-textindexing system into Lore.AcknowledgmentsFor their many contributions to the Lore project and systemimplementation we are grateful to (alphabetically) KevinHaas, Matt Jacobsen, Tirthankar Lahiri, Qingshan Luo,Svetlozar Nestorov, Anand Rajaraman, Hugo Rivero,Michael Rys, and Takeshi Yokokawa. We also thank manyother members of the Stanford Database Group for fruitfuldiscussions about Lore and Lorel, including (alphabetically)Sudarshan Chawathe, Joachim Hammer, Shuky Sagiv, Je�Ullman, Janet Wiener, and Jun Yang. Finally, we are grate-ful to an anonymous referee for a careful reading and helpfulcomments.References[Abi97] S. Abiteboul. Querying semistructured data. InProceedings of the International Conference onDatabase Theory, Delphi, Greece, January 1997.[AGM+97] S. Abiteboul, R. Goldman, J. McHugh, V. Vassa-los, and Y. Zhuge. Views for semistructured data.In Proceedings of the Workshop on Managementof Semistructured Data, pages 83{90, Tucson, Ari-zona, May 1997.[AQM+96] S. Abiteboul, D. Quass, J. McHugh, J. Widom,and J. Wiener. The Lorel query language for semi-structured data. Journal of Digital Libraries, 1(1),November 1996.

www.manaraa.com

[BCK+94] G. Blake, M. Consens, P. Kilpel�ainen, P. Larson,T. Snider, and F. Tompa. Text/relational data-base management systems: Harmonizing SQL andSGML. In Proceedings of the First InternationalConference on Applications of Databases, pages267{280, Vadstena, Sweden, 1994.[BDHS96] P. Buneman, S. Davidson, G. Hillebrand, andD. Suciu. A query language and optimization tech-nieques for unstructured data. In Proceedings ofthe ACM SIGMOD International Conference onManagement of Data, pages 505{516, Montreal,Canada, June 1996.[BDK92] F. Bancilhon, C. Delobel, and P. Kanellakis, edi-tors. Building an Object-Oriented Database Sys-tem: The Story of O2. Morgan Kaufmann, SanFrancisco, California, 1992.[BDS95] P. Buneman, S. Davidson, and D. Suciu. Program-ming constructs for unstructured data. In Proceed-ings of the 1995 International Workshop on Data-base Programming Languages (DBPL), 1995.[BK94] C. Beeri and Y. Kornatski. A logical query languagefor hypermedia systems. Information Sciences, 77,1994.[CACS94] V. Christophides, S. Abiteboul, S. Cluet, andM. Scholl. From structured documents to novelquery facilities. In Proceedings of the ACM SIG-MOD International Conference on Management ofData, pages 313{324, Minneapolis, Minnesota, May1994.[Cat94] R.G.G. Cattell. The Object Database Standard:ODMG-93. Morgan Kaufmann, San Francisco, Cal-ifornia, 1994.[CAW97] S. Chawathe, S. Abiteboul, and J. Widom. Rep-resenting and querying changes in semistructureddata. Technical report, Stanford University Data-base Group, February 1997.[CCM96] V. Christophides, S. Cluet, andG.Moerkotte. Eval-uating queries with generalized path expressions.In Proceedings of the ACM SIGMOD InternationalConference on Management of Data, pages 413{422, Montreal, Canada, June 1996.[CM89] M.P. Consens and A.O. Mendelzon. Expressingstructural hypertext queries in GraphLog. In Pro-ceedings of the Second ACM Conference on Hy-pertext, pages 269{292, Pittsburgh, Pennsylvania,November 1989.[Com91] IEEE Computer. Special Issue on HeterogeneousDistributed Database Systems, 24(12), December1991.[Gaf97] J. Ga�ney. Illustra's web datablade module.Technical report, Informix Corporation, Febru-ary 1997. Available at http://www.informix.comas /informix/corpinfo/zines/whitpprs/illuswp/dblade.htm.[GHJ96] S. Ghandeharizadeh, R. Hull, and D. Jacobs. Her-aclitus: Elevating deltas to be �rst class citizens ina database programming language. ACM Transac-tions on Database Systems, 21(3):370{426, 1996.[Gra93] G. Graefe. Query evaluation techniques for largedatabases.ACM Computing Surveys, 25(2):73{170,1993.[GW97] R. Goldman and J. Widom. Dataguides: Enablingquery formulation and optimization in semistruc-tured databases. In Proceedings of the Twenty-Third International Conference on Very LargeData Bases, Athens, Greece, August 1997.[KKS92] M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In Proceedings of the ACMSIGMOD International Conference on Manage-ment of Data, pages 393{402, San Diego, Califor-nia, June 1992.[KS95] D. Konopnicki and O. Shmueli. W3QS: A querysystem for the World Wide Web. In Proceedings ofthe Twenty-First International Conference on VeryLarge Data Bases, pages 54{65, Zurich, Switzer-land, September 1995.

[Lit80] W. Litwin. Linear hashing: a new tool for �le andtable addressing. In Proceedings of the Interna-tional Conference on Very Large Data Bases, pages212{223, Montreal, Canada, October 1980.[LMR90] W. Litwin, L. Mark, and N. Roussopoulos. Interop-erability of multiple autonomous databases. ACMComputing Surveys, 22(3):267{293, 1990.[LSS96] L.V.S. Lakshmanan, F. Sadri, and I.N. Subrama-nian. A declarative language for querying and re-structuring theWeb. In Proceedings of the Sixth In-ternational Workshop on Research Issues in DataEngineering (RIDE '96), New Orleans, February1996.[MMM96] A.O. Mendelzon,G. Mihaila, andT. Milo. Queryingthe world wide web. In Proceedings of the Confer-ence on Parallel and Distributed Information Sys-tems (PDIS'96), December 1996. Full version toappear in the Journal of Digital Libraries.[MS93] J. Melton and A.R. Simon. Understanding the NewSQL: A Complete Guide. Morgan Kaufmann, SanFrancisco, California, 1993.[MW93] T. Minohara and R. Watanabe. Queries on struc-ture in hypertext. In Proceedings of the Conferenceon Foundations of Data Organization (FODO '93),pages 394{411. Springer Verlag, 1993.[MW95] A. O. Mendelzon and P. T. Wood. Finding regularsimple paths in graph databases. SIAM Journal ofComputing, 24(6), 1995.[MW97] J. McHugh and J. Widom. Integratingdynamically-fetched external information into a dbms for semi-structured data. In Proceedings of the Workshop onManagement of Semistructured Data, pages 75{82,Tucson, Arizona, May 1997.[O'N87] Patrick O'Neil. Model 204 architecture and per-formance. In Proceedings of the 2nd InternationalWorkshop on High Performance Transaction Sys-tems (HPTS), pages 40{59, Asilomar, CA, 1987.[PGGMU95] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina,and J. Ullman. A query translation scheme forrapid implementation of wrappers. In Proceedingsof the Fourth International Conference on Deduc-tive and Object-Oriented Databases, Singapore,De-cember 1995.[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, andJ. Widom. Object exchange across heterogeneousinformation sources. In Proceedings of the EleventhInternational Conference on Data Engineering,pages 251{260, Taipei, Taiwan, March 1995.[QRS+95] D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman,and J. Widom. Querying semistructured hetero-geneous information. In Proceedings of the FourthInternational Conference on Deductive and Object-Oriented Databases, pages 319{344, Singapore, De-cember 1995.[QWG+96] D. Quass, J. Widom, R. Goldman,K. Haas, Q. Luo,J. McHugh, S. Nestorov, A. Rajaraman, H. Rivero,S. Abiteboul, J. Ullman, and J. Wiener. LORE: ALightweight Object REpository for SemistructuredData. In Proceedings of the ACM SIGMOD Inter-national Conference on Management of Data, page549, Montreal, Canada, June 1996. Demonstrationdescription.[SK91] M. Stonebraker and G. Kemnitz. The POST-GRES next-generation database management sys-tem. Communications of the ACM, 34(10):78{92,October 1991.[SL90] A. Sheth and J.A. Larson. Federated database sys-tems for managing distributed, heterogeneous, andautonomous databases. ACM Computing Surveys,22(3):183{236, 1990.[YA94] T. Yan and J. Annevelink. Integratinga structured-text retrieval system with an object-oriented data-base system. In Proceedings of the Twentieth In-ternational Conference on Very Large Data Bases,pages 740{749, Santiago, Chile, September 1994.[Zlo77] M.M. Zloof. Qurey-by-Example: a data base lan-guage. IBM Systems Journal, 16(4):324{343, 1977.

